How quaternion algebras shape the structure of square power classes over biquadratic extensions

Andrew Schultz

May 29, 2023

Wellesley College

In collaboration with...

John Swallow Frank Chemotti Ján Mináč

Tung T. Nguyen Nguyen Duy Tan

Here's what we'll be doing

- Introduce a Galois module of interest
- Review what is known about it
- Reinterpret module-theoretic info arithmetically
- Compute some examples

Motivation and Background

If K/F is a biquadratic extension and char $(F) \neq 2$, decompose $K^{\times}/K^{\times 2}$ as module over $\mathbb{F}_2[\text{Gal}(K/F)]$.

If K/F is a biquadratic extension and char $(F) \neq 2$, decompose $K^{\times}/K^{\times 2}$ as module over $\mathbb{F}_2[\text{Gal}(K/F)]$.

Why should we care?

If K/F is a biquadratic extension and char $(F) \neq 2$, decompose $K^{\times}/K^{\times 2}$ as module over $\mathbb{F}_2[\text{Gal}(K/F)]$.

Why should we care?

If decomposition is "special" for any K/F, this means absolute Galois groups are "special" too

If K/F is a biquadratic extension and char $(F) \neq 2$, decompose $K^{\times}/K^{\times 2}$ as module over $\mathbb{F}_2[\text{Gal}(K/F)]$.

Why should we care?

If decomposition is "special" for any K/F, this means absolute Galois groups are "special" too

(Spoiler alert: this module has been decomposed, and its "special" for any choice of K/F)

$$K = F(\sqrt{a_1}, \sqrt{a_2})$$

$$\sigma_i(\sqrt{a_j}) = (-1)^{\delta_{ij}} \sqrt{a_j}$$

$$G = \operatorname{Gal}(K/F) \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$

$$K = F(\sqrt{a_1}, \sqrt{a_2})$$

$$\sigma_i(\sqrt{a_j}) = (-1)^{\delta_{ij}} \sqrt{a_j}$$

$$G = \operatorname{Gal}(K/F) \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$

- /

17

$$K = F(\sqrt{a_1}, \sqrt{a_2})$$

$$\sigma_i(\sqrt{a_j}) = (-1)^{\delta_{ij}} \sqrt{a_j}$$

$$G = \operatorname{Gal}(K/F) \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$

$$[\gamma] \in K^{\times}/K^{\times 2} \text{ is class of}$$

$$\gamma \in K^{\times}$$

 $[\gamma]_i \in K_i^{\times}/K_i^{\times 2}$ is class of $\gamma \in K_i$

$$\begin{split} & \mathcal{K} = \mathcal{F}(\sqrt{a_1}, \sqrt{a_2}) \\ & \sigma_i(\sqrt{a_j}) = (-1)^{\delta_{ij}} \sqrt{a_j} \\ & \mathcal{G} = \operatorname{Gal}(\mathcal{K}/\mathcal{F}) \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \\ & [\gamma] \in \mathcal{K}^{\times}/\mathcal{K}^{\times 2} \text{ is class of} \\ & \gamma \in \mathcal{K}^{\times} \\ & [\gamma]_i \in \mathcal{K}_i^{\times}/\mathcal{K}_i^{\times 2} \text{ is class of } \gamma \in \mathcal{K}_i \end{split}$$

 $\begin{array}{c|c}
K \\
K_1 \\
K_3 \\
K_2 \\
F
\end{array}$

 $H_i = \operatorname{Gal}(G/K_i)$

Key operators: $1 + \sigma_1$ and $1 + \sigma_2$

Key operators: $1 + \sigma_1$ and $1 + \sigma_2$

We will view module information with pictures

Key operators: $1 + \sigma_1$ and $1 + \sigma_2$

We will view module information with pictures

 $[\alpha_1] = [\alpha]^{1+\sigma_2}$

Key operators: $1 + \sigma_1$ and $1 + \sigma_2$

We will view module information with pictures

 $[\alpha_1] = [\alpha]^{1+\sigma_2}$

Key operators: $1 + \sigma_1$ and $1 + \sigma_2$

We will view module information with pictures

A sample of $\mathbb{F}_2[\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}]$ -indecomposables

For n > 1, there are 2 indecomposables of dimension 2n + 1

A sample of $\mathbb{F}_2[\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}]$ -indecomposables

Our module decomposition

Theorem [Chemotti, Mináč, S-, Swallow]

Suppose char(K) \neq 2 and Gal(K/F) $\simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Then

 $\mathcal{K}^{ imes}/\mathcal{K}^{ imes 2}\simeq \mathcal{O}_1\oplus \mathcal{O}_2\oplus \mathcal{Q}_0\oplus \mathcal{Q}_1\oplus \mathcal{Q}_2\oplus \mathcal{Q}_3\oplus \mathcal{Q}_4\oplus X,$

where

- for each i ∈ {1,2}, the summand O_i is a direct sum of modules isomorphic to Ωⁱ; and
- for each i ∈ {0, 1, 2, 3, 4}, the summand Q_i is a direct sum of modules isomorphic to 𝔽₂[G/H_i]; and
- X is isomorphic to one of the following: {0}, \mathbb{F}_2 , $\mathbb{F}_2 \oplus \mathbb{F}_2$, Ω^{-1} , Ω^{-2} , or $\Omega^{-1} \oplus \Omega^{-1}$.

Our module decomposition

Theorem [Chemotti, Mináč, S-, Swallow]

Suppose char(K) \neq 2 and Gal(K/F) $\simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Then

$$K^{\times}/K^{\times 2} \simeq \underbrace{O_1 \oplus O_2 \oplus Q_0 \oplus Q_1 \oplus Q_2 \oplus Q_3 \oplus Q_4}_{\bullet} \oplus X,$$

"unexceptional summand" Y

where

- for each i ∈ {1,2}, the summand O_i is a direct sum of modules isomorphic to Ωⁱ; and
- for each i ∈ {0, 1, 2, 3, 4}, the summand Q_i is a direct sum of modules isomorphic to 𝔽₂[G/H_i]; and
- X is isomorphic to one of the following: {0}, \mathbb{F}_2 , $\mathbb{F}_2 \oplus \mathbb{F}_2$, Ω^{-1} , Ω^{-2} , or $\Omega^{-1} \oplus \Omega^{-1}$.

Motivation and Background

How the decomposition works

Strategy:

I: Build a big module Y with $Y^G = [F^{\times}] \subseteq (K^{\times}/K^{\times 2})^G$

Strategy:

- I: Build a big module Y with $Y^G = [F^{\times}] \subseteq (K^{\times}/K^{\times 2})^G$
- II: Build a small module X "over" a complement to $[F^{\times}]$

Strategy:

- I: Build a big module Y with $Y^G = [F^{\times}] \subseteq (K^{\times}/K^{\times 2})^G$
- II: Build a small module X "over" a complement to $[F^{\times}]$
- III: Show X + Y spans

Strategy:

- I: Build a big module Y with $Y^G = [F^{\times}] \subseteq (K^{\times}/K^{\times 2})^G$
- II: Build a small module X "over" a complement to $[F^{\times}]$
- III: Show X + Y spans

How do we build Y?

Guiding principle

If $[f] \in [F^{\times}]$ is in the image of a norm map in $K^{\times}/K^{\times 2}$, make sure it's in the image of that norm map in Y.

How do we build Y?

Guiding principle

If $[f] \in [F^{\times}]$ is in the image of a norm map in $K^{\times}/K^{\times 2}$, make sure it's in the image of that norm map in Y.

How do we build Y?

Guiding principle

If $[f] \in [F^{\times}]$ is in the image of a norm map in $K^{\times}/K^{\times 2}$, make sure it's in the image of that norm map in Y.

...greed, for lack of a better word, is good.

Greed, in all of its forms greed for life, for money, for love norms, knowledge has marked the upward surge of mankind.

Introducing the norms

Introducing the norms

Tension!

 $[\gamma_1]$ [*f*] [1]

Tension!

But what if $[f] \in \mathscr{B} \cap \mathscr{C}$?

To be greedy, we want $\mathscr V$ more than $\mathscr B$ or $\mathscr C$

What about $(\mathscr{B} + \mathscr{C}) \cap \mathscr{D}$?

What about $(\mathscr{B} + \mathscr{C}) \cap \mathscr{D}$?

Lemma [Tracking norm interactions] $[b][c] \in (\mathscr{B} + \mathscr{C}) \cap \mathscr{D}$ if and only if there is a solution to

Define $\mathscr{W} = \{([b], [c]) : \exists [\gamma_1], [\gamma_2], [\gamma_3] \ni \dots \}.$

Proposition

There exists a submodule Y whose fixed part is $[F^{\times}]$, and which is a direct sum of modules isomorphic to

- $\mathbb{F}_2[G/H_i]$ for $i \in \{0, 1, 2, 3, 4\}$
- Ω^k for $k \in \{1, 2\}$

Proposition

There exists a submodule Y whose fixed part is $[F^{\times}]$, and which is a direct sum of modules isomorphic to

- $\mathbb{F}_2[G/H_i]$ for $i \in \{0, 1, 2, 3, 4\}$
- Ω^k for $k \in \{1, 2\}$

Proof sketch:

Proposition

There exists a submodule Y whose fixed part is $[F^{\times}]$, and which is a direct sum of modules isomorphic to

- $\mathbb{F}_2[G/H_i]$ for $i \in \{0, 1, 2, 3, 4\}$
- Ω^k for $k \in \{1, 2\}$

Proof sketch:

Move through subspaces in order $(\mathscr{A}, \mathscr{V}, \mathscr{W}, \mathscr{B}, \mathscr{C}, \mathscr{D}, [F^{\times}])$

Proposition

There exists a submodule Y whose fixed part is $[F^{\times}]$, and which is a direct sum of modules isomorphic to

- $\mathbb{F}_2[G/H_i]$ for $i \in \{0, 1, 2, 3, 4\}$
- Ω^k for $k \in \{1,2\}$

Proof sketch:

Move through subspaces in order $(\mathscr{A}, \mathscr{V}, \mathscr{W}, \mathscr{B}, \mathscr{C}, \mathscr{D}, [F^{\times}])$

 $\rightsquigarrow\,$ Make module "above" your element for given diagram

Proposition

There exists a submodule Y whose fixed part is $[F^{\times}]$, and which is a direct sum of modules isomorphic to

- $\mathbb{F}_2[G/H_i]$ for $i \in \{0, 1, 2, 3, 4\}$
- Ω^k for $k \in \{1,2\}$

Proof sketch:

Move through subspaces in order $(\mathscr{A}, \mathscr{V}, \mathscr{W}, \mathscr{B}, \mathscr{C}, \mathscr{D}, [F^{\times}])$

- \rightsquigarrow Make module "above" your element for given diagram
- \rightsquigarrow Be sure to avoid what you've already captured!

Reinterpreting the construction of Y

Arithmetic interpretation for solvability

Original argument views Y in terms of solvability of diagrams, but gives no indication of how we determine solvability

Original argument views Y in terms of solvability of diagrams, but gives no indication of how we determine solvability

Theorem [Diagram solvability and Br(F)] Let $S = \langle (a_1, a_1), (a_1, a_2), (a_2, a_2) \rangle \subseteq Br(F)$. For $f, g \in F^{\times}$, we have $(a_1, f)(a_2, g) \in S$ iff there exists $\gamma \in K^{\times}$ with $\int_{[g]}^{\sqrt{r}} \int_{[f]}^{\sqrt{r}} \int_{[f]}^{\sqrt{r}} f(f) df(g) dg) df($ Original argument views Y in terms of solvability of diagrams, but gives no indication of how we determine solvability

Theorem [Diagram solvability and Br(F)] Let $S = \langle (a_1, a_1), (a_1, a_2), (a_2, a_2) \rangle \subseteq Br(F)$. For $f, g \in F^{\times}$, we have $(a_1, f)(a_2, g) \in S$ iff there exists $\gamma \in K^{\times}$ with $\int_{[g]}^{\sqrt{\gamma}} \int_{[f]}^{\sqrt{\gamma}} \int_{[f]}^{\sqrt{\gamma}} f(g) dg$

Sketch of proof: solvability of Galois embedding problems

Thinking rationally

Great news: if $F = \mathbb{Q}$, then local-global principle makes computing elements of $Br(\mathbb{Q})$ nicely explicit: $(a, b) = (c, d) \in Br(\mathbb{Q})$ iff for all $v \in \{2, 3, 5, 7, \dots, \infty\}$ we have $(a, b)_v = (c, d)_v$

Thinking rationally

Great news: if $F = \mathbb{Q}$, then local-global principle makes computing elements of $Br(\mathbb{Q})$ nicely explicit: $(a, b) = (c, d) \in Br(\mathbb{Q})$ iff for all $v \in \{2, 3, 5, 7, \dots, \infty\}$ we have $(a, b)_v = (c, d)_v$

• if $p = \infty$ and $a, b \in \mathbb{Z}$ then

$$(a,b)_{\infty}=-1$$
 if $a,b<0,$ $(a,b)_{\infty}=1$ else

• if p odd prime then for gcd(a, p) = gcd(b, p) = 1 we get

$$(a, b)_p = 1,$$
 $(a, p)_p = \left(\frac{a}{p}\right),$ $(p, p)_p = \left(\frac{-1}{p}\right)$

• if p=2 and $a,b\in 2\mathbb{Z}+1$ then

$$(a,b)_2 = (-1)^{\frac{a-1}{2} \cdot \frac{b-1}{2}}, \quad (a,2)_p = (-1)^{\frac{a^2-1}{8}}, \quad (2,2)_2 = 1$$

$$\mathscr{V} = \left\{ [f] : \exists [\gamma_1], [\gamma_2] \text{ with } [\gamma_1] [f] [f] [1] \right\}$$

 $= \{ [f] : (a_1, f)(a_2, 1) \in \mathcal{S} \text{ and } (a_1, 1)(a_2, f) \in \mathcal{S} \}$

 $= \{ [f] : (a_1, f)(a_2, 1) \in S \text{ and } (a_1, 1)(a_2, f) \in S \}$

$$\mathcal{V} = \left\{ [f] : \exists [\gamma_1], [\gamma_2] \text{ with } [f] \qquad [\gamma_1] \qquad [\gamma_2] \\ = \{ [f] : (a_1, f)(a_2, 1) \in \mathcal{S} \text{ and } (a_1, 1)(a_2, f) \in \mathcal{S} \} \\ = \{ [f] : (a_1, f) \in \mathcal{S} \text{ and } (a_2, f) \in \mathcal{S} \} \right\}$$

$$\mathcal{V} = \left\{ [f] : \exists [\gamma_1], [\gamma_2] \text{ with } [f] \qquad [\gamma_1] \qquad [\gamma_2] \\ = \{ [f] : (a_1, f)(a_2, 1) \in \mathcal{S} \text{ and } (a_1, 1)(a_2, f) \in \mathcal{S} \} \\ = \{ [f] : (a_1, f) \in \mathcal{S} \text{ and } (a_2, f) \in \mathcal{S} \} \right\}$$

Corollary

 Ω^1 summands of $K^{\times}/K^{\times 2}$ exist if there exists f so that $(a_1, f), (a_2, f) \in S \setminus \{0\}.$

Let
$$K/F = \mathbb{Q}(\sqrt{7}, \sqrt{-5})/\mathbb{Q}$$

 $\mathcal{S} = \langle (7,7), (7,-5), (-5,-5) \rangle$

Let
$$K/F = \mathbb{Q}(\sqrt{7}, \sqrt{-5})/\mathbb{Q}$$

 $\mathcal{S} = \langle (7,7), (7,-5), (-5,-5) \rangle$

Goal: show $K^{\times}/K^{\times 2}$ has Ω^1 summands \rightsquigarrow enough to find $f \in \mathbb{Q}$ so $(-5, f), (7, f) \in S \setminus \{0\}$

Let
$$K/F = \mathbb{Q}(\sqrt{7}, \sqrt{-5})/\mathbb{Q}$$

 $\mathcal{S} = \langle (7,7), (7,-5), (-5,-5) \rangle$

Goal: show $K^{\times}/K^{\times 2}$ has Ω^1 summands

 \rightsquigarrow enough to find $f \in \mathbb{Q}$ so $(-5, f), (7, f) \in \mathcal{S} \setminus \{0\}$

Strategy: find prime *p* with (-5, -p) = (-5, -5) and (7, -p) = (7, 7)

Fact:
$$(-5, -5)_v = -1$$
 iff $v = 2, \infty$

Fact:
$$(-5, -5)_{\nu} = -1$$
 iff $\nu = 2, \infty$
 $(-5, -p)_{\nu} = (-1, -1)_{\nu}(5, -1)_{\nu}(-1, p)_{\nu}(5, p)_{\nu}$

Fact:
$$(-5, -5)_v = -1$$
 iff $v = 2, \infty$
 $(-5, -p)_v = (-1, -1)_v (5, -1)_v (-1, p)_v (5, p)_v$
 $= \begin{cases} \text{if } v = \infty \\ \text{if } v = 2 \\ \text{if } v = 5 \\ \text{if } v = p. \end{cases}$

Fact:
$$(-5, -5)_{v} = -1$$
 iff $v = 2, \infty$
 $(-5, -p)_{v} = (-1, -1)_{v}(5, -1)_{v}(-1, p)_{v}(5, p)_{v}$
 $= \begin{cases} -1, & \text{if } v = \infty \\ & \text{if } v = 2 \\ & \text{if } v = 5 \\ & \text{if } v = p. \end{cases}$

Finding our prime, part I:
$$(-5, -5) = (-5, -p)$$

Fact:
$$(-5, -5)_{v} = -1$$
 iff $v = 2, \infty$
 $(-5, -p)_{v} = (-1, -1)_{v}(5, -1)_{v}(-1, p)_{v}(5, p)_{v}$

$$= \begin{cases} -1, & \text{if } v = \infty \\ -1 \cdot 1 \cdot (-1)^{\frac{p-1}{2}} \cdot 1, & \text{if } v = 2 \\ & \text{if } v = 5 \\ & \text{if } v = p. \end{cases}$$

Finding our prime, part I:
$$(-5, -5) = (-5, -p)$$

Fact:
$$(-5, -5)_{v} = -1$$
 iff $v = 2, \infty$
 $(-5, -p)_{v} = (-1, -1)_{v}(5, -1)_{v}(-1, p)_{v}(5, p)_{v}$

$$= \begin{cases} -1, & \text{if } v = \infty \\ -1 \cdot 1 \cdot (-1)^{\frac{p-1}{2}} \cdot 1, & \text{if } v = 2 \\ 1 \cdot (\frac{-1}{5}) \cdot 1 \cdot (\frac{p}{5}), & \text{if } v = 5 \\ & \text{if } v = p. \end{cases}$$

Finding our prime, part I:
$$(-5, -5) = (-5, -p)$$

Fact:
$$(-5, -5)_{v} = -1$$
 iff $v = 2, \infty$
 $(-5, -p)_{v} = (-1, -1)_{v}(5, -1)_{v}(-1, p)_{v}(5, p)_{v}$

$$= \begin{cases} -1, & \text{if } v = \infty \\ -1 \cdot 1 \cdot (-1)^{\frac{p-1}{2}} \cdot 1, & \text{if } v = 2 \\ 1 \cdot (\frac{-1}{5}) \cdot 1 \cdot (\frac{p}{5}), & \text{if } v = 5 \\ 1 \cdot 1 \cdot (\frac{-1}{p}) \cdot (\frac{5}{p}), & \text{if } v = p. \end{cases}$$

Finding our prime, part I:
$$(-5, -5) = (-5, -p)$$

Fact:
$$(-5, -5)_{v} = -1$$
 iff $v = 2, \infty$
 $(-5, -p)_{v} = (-1, -1)_{v}(5, -1)_{v}(-1, p)_{v}(5, p)_{v}$

$$= \begin{cases} -1, & \text{if } v = \infty \\ -1 \cdot 1 \cdot (-1)^{\frac{p-1}{2}} \cdot 1, & \text{if } v = 2 \\ 1 \cdot (\frac{-1}{5}) \cdot 1 \cdot (\frac{p}{5}), & \text{if } v = 5 \\ 1 \cdot 1 \cdot (\frac{-1}{p}) \cdot (\frac{5}{p}), & \text{if } v = p. \end{cases}$$

So we want $p \equiv 1 \pmod{4}$ and $p \equiv 1, 4 \pmod{5}$

Fact: $(7,7)_v = -1$ iff v = 2,7

Fact:
$$(7,7)_{v} = -1$$
 iff $v = 2,7$
 $(7,-p)_{v} = (7,-1)_{v}(7,p)_{v}$

$$= \begin{cases} 1, & \text{if } v = \infty \\ -1 \cdot (-1)^{\frac{p-1}{2}}, & \text{if } v = 2 \\ (\frac{-1}{7}) \cdot (\frac{p}{7}), & \text{if } v = 7 \\ 1 \cdot (\frac{7}{p}), & \text{if } v = p. \end{cases}$$

Fact:
$$(7,7)_{v} = -1$$
 iff $v = 2,7$
 $(7,-p)_{v} = (7,-1)_{v}(7,p)_{v}$

$$= \begin{cases} 1, & \text{if } v = \infty \\ -1 \cdot (-1)^{\frac{p-1}{2}}, & \text{if } v = 2 \\ (\frac{-1}{7}) \cdot (\frac{p}{7}), & \text{if } v = 7 \\ 1 \cdot (\frac{7}{p}), & \text{if } v = p. \end{cases}$$

So we need $p \equiv 1 \pmod{4}$ and $p \equiv 1, 2, 4 \pmod{7}$

Fact:
$$(7,7)_{v} = -1$$
 iff $v = 2,7$
 $(7,-p)_{v} = (7,-1)_{v}(7,p)_{v}$

$$= \begin{cases} 1, & \text{if } v = \infty \\ -1 \cdot (-1)^{\frac{p-1}{2}}, & \text{if } v = 2 \\ (\frac{-1}{7}) \cdot (\frac{p}{7}), & \text{if } v = 7 \\ 1 \cdot (\frac{7}{p}), & \text{if } v = p. \end{cases}$$

So we need $p \equiv 1 \pmod{4}$ and $p \equiv 1, 2, 4 \pmod{7}$

Summary: any prime p with $p \equiv 1 \pmod{4}$, $p \equiv 1, 4 \pmod{5}$, and $p \equiv 1, 2, 4 \pmod{7}$ works.

Fact:
$$(7,7)_{v} = -1$$
 iff $v = 2,7$
 $(7,-p)_{v} = (7,-1)_{v}(7,p)_{v}$

$$= \begin{cases} 1, & \text{if } v = \infty \\ -1 \cdot (-1)^{\frac{p-1}{2}}, & \text{if } v = 2 \\ (\frac{-1}{7}) \cdot (\frac{p}{7}), & \text{if } v = 7 \\ 1 \cdot (\frac{7}{p}), & \text{if } v = p. \end{cases}$$

So we need $p \equiv 1 \pmod{4}$ and $p \equiv 1, 2, 4 \pmod{7}$

Summary: any prime p with $p \equiv 1 \pmod{4}$, $p \equiv 1, 4 \pmod{5}$, and $p \equiv 1, 2, 4 \pmod{7}$ works.

 \rightsquigarrow lots of Ω^1 summands in this module

What about Ω^2 summands?

Ω^2 summands occurs for solutions to

Ω^2 summands occurs for solutions to

AND we must have $[f], [g] \notin \mathscr{V}$

Ω^2 summands occurs for solutions to

AND we must have $[f], [g] \notin \mathscr{V}$

Ω^2 summands occurs for solutions to

Ω^2 summands occurs for solutions to

AND we must have $[f], [g] \notin \mathcal{V}$

Ω^2 summands occurs for solutions to

AND we must have $[f], [g] \notin \mathscr{V}$

Ω^2 summands occurs for solutions to

AND we must have $[f], [g] \notin \mathscr{V}$

So we need $(a_1, f), (a_2, g) \in S$ and $(a_2, f)(a_1, g) \in S$ but $(a_2, f), (a_1, g) \notin S$

Corollary

 Ω^2 summands of $K^{\times}/K^{\times 2}$ exist if there exist f, g so that $(a_1, f), (a_2, g) \in S$ and $(a_1, g) = (a_2, f) \notin S$.

Let
$$K/F = \mathbb{Q}(\sqrt{33}, \sqrt{35})/\mathbb{Q}$$

Let $K/F = \mathbb{Q}(\sqrt{33}, \sqrt{35})/\mathbb{Q}$ Goal: show $K^{\times}/K^{\times 2}$ has Ω^2 summands

 \rightsquigarrow enough to find *f*, *g* so that $(a_1, f), (a_2, g) \in S$ and $(a_1, g) = (a_2, f) \notin S$.

Let $K/F = \mathbb{Q}(\sqrt{33}, \sqrt{35})/\mathbb{Q}$

Goal: show $K^{\times}/K^{\times 2}$ has Ω^2 summands

 \rightsquigarrow enough to find *f*, *g* so that $(a_1, f), (a_2, g) \in S$ and $(a_1, g) = (a_2, f) \notin S$.

Strategy: find primes p, q with (33, 3pq) = (33, 33) and (35, 7pq) = (1, 1) and $(33, 7pq) = (35, 3pq) \notin S$

Let $K/F = \mathbb{Q}(\sqrt{33}, \sqrt{35})/\mathbb{Q}$

Goal: show $K^{\times}/K^{\times 2}$ has Ω^2 summands

 \rightsquigarrow enough to find *f*, *g* so that $(a_1, f), (a_2, g) \in S$ and $(a_1, g) = (a_2, f) \notin S$.

Strategy: find primes p, q with (33, 3pq) = (33, 33) and (35, 7pq) = (1, 1) and $(33, 7pq) = (35, 3pq) \notin S$

 \rightsquigarrow Choose *p* so *p* ≠ □ (mod 3), *p* ≠ □ (mod 4), *p* ≠ □ (mod 5), *p* ≡ □ (mod 7), and *p* ≠ □ (mod 11)

 \rightsquigarrow Choose q so $q \equiv \Box \pmod{3}$, $q \equiv \Box \pmod{4}$, $q \equiv \Box \pmod{5}$, $q \equiv \Box \pmod{7}$, and $q \equiv \Box \pmod{11}$

This same strategy provides methods for realizing other "unexceptional" summand types over well-chosen rational biquadratic extensions

- This same strategy provides methods for realizing other "unexceptional" summand types over well-chosen rational biquadratic extensions
- The structure of the X summand also has new interpretation in this lens (but less exciting since it was originally interpretable in terms of Galois embeddings)

Thanks!