How quaternion algebras shape the structure of square power classes over biquadratic extensions

Andrew Schultz

May 29, 2023
Wellesley College

In collaboration with...

John Swallow

Frank Chemotti

Ján Mináč

Tung T. Nguyen Nguyen Duy Tan

The next 25 minutes of your life

Here's what we'll be doing

- Introduce a Galois module of interest
- Review what is known about it
- Reinterpret module-theoretic info arithmetically
- Compute some examples

Motivation and Background

Big picture goal

Problem under consideration

If K / F is a biquadratic extension and $\operatorname{char}(F) \neq 2$, decompose $K^{\times} / K^{\times 2}$ as module over $\mathbb{F}_{2}[\operatorname{Gal}(K / F)]$.

Big picture goal

Problem under consideration

If K / F is a biquadratic extension and $\operatorname{char}(F) \neq 2$, decompose $K^{\times} / K^{\times 2}$ as module over $\mathbb{F}_{2}[\operatorname{Gal}(K / F)]$.

Why should we care?

Big picture goal

Problem under consideration

If K / F is a biquadratic extension and $\operatorname{char}(F) \neq 2$, decompose $K^{\times} / K^{\times 2}$ as module over $\mathbb{F}_{2}[\operatorname{Gal}(K / F)]$.

Why should we care?
If decomposition is "special" for any K / F, this means absolute
Galois groups are "special" too

Big picture goal

Problem under consideration

If K / F is a biquadratic extension and $\operatorname{char}(F) \neq 2$, decompose $K^{\times} / K^{\times 2}$ as module over $\mathbb{F}_{2}[\operatorname{Gal}(K / F)]$.

Why should we care?
If decomposition is "special" for any K / F, this means absolute
Galois groups are "special" too
(Spoiler alert: this module has been decomposed, and its "special" for any choice of K / F)

Notation

$$
\begin{aligned}
& K=F\left(\sqrt{a_{1}}, \sqrt{a_{2}}\right) \\
& \sigma_{i}\left(\sqrt{a_{j}}\right)=(-1)^{\delta_{i j}} \sqrt{a_{j}} \\
& G=\operatorname{Gal}(K / F) \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
\end{aligned}
$$

Notation

$$
\begin{aligned}
& K=F\left(\sqrt{a_{1}}, \sqrt{a_{2}}\right) \\
& \sigma_{i}\left(\sqrt{a_{j}}\right)=(-1)^{\delta_{i j}} \sqrt{a_{j}}
\end{aligned}
$$

$$
G=\operatorname{Gal}(K / F) \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

Notation

$K=F\left(\sqrt{a_{1}}, \sqrt{a_{2}}\right)$
$\sigma_{i}\left(\sqrt{a_{j}}\right)=(-1)^{\delta_{i j}} \sqrt{a_{j}}$
$G=\operatorname{Gal}(K / F) \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$
$[\gamma] \in K^{\times} / K^{\times 2}$ is class of
$\gamma \in K^{\times}$
$[\gamma]_{i} \in K_{i}^{\times} / K_{i}^{\times 2}$ is class of $\gamma \in K_{i}$

Notation

$K=F\left(\sqrt{a_{1}}, \sqrt{a_{2}}\right)$
$\sigma_{i}\left(\sqrt{a_{j}}\right)=(-1)^{\delta_{i j}} \sqrt{a_{j}}$
$G=\operatorname{Gal}(K / F) \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$
$[\gamma] \in K^{\times} / K^{\times 2}$ is class of
$\gamma \in K^{\times}$
$[\gamma]_{i} \in K_{i}^{\times} / K_{i}^{\times 2}$ is class of $\gamma \in K_{i}$

$H_{i}=\operatorname{Gal}\left(G / K_{i}\right)$

Warning: graphic content

Key operators: $1+\sigma_{1}$ and $1+\sigma_{2}$

Warning: graphic content

Key operators: $1+\sigma_{1}$ and $1+\sigma_{2}$
We will view module information with pictures

Warning: graphic content

Key operators: $1+\sigma_{1}$ and $1+\sigma_{2}$
We will view module information with pictures

$$
\begin{aligned}
& \vee^{\times^{\sigma^{2}}} \\
& {\left[\alpha \alpha_{1}\right]^{[\alpha]}} \\
& {\left[\alpha_{1}\right]=[\alpha]^{1+\sigma_{2}}}
\end{aligned}
$$

Warning: graphic content

Key operators: $1+\sigma_{1}$ and $1+\sigma_{2}$
We will view module information with pictures

Warning: graphic content

Key operators: $1+\sigma_{1}$ and $1+\sigma_{2}$
We will view module information with pictures
$[\alpha]$

$\left[\beta_{1}\right]=[\beta]^{1+\sigma_{2}}$

$$
=[\beta]^{1+\sigma_{2}}
$$

$\left[\beta_{1}\right]$	$=[\beta]^{1+\sigma_{2}}$
	$=[\beta]^{1+\sigma_{2}}$

[2]

[γ_{1}]
[γ_{2}]
$\left[\alpha_{1}\right]=[\alpha]^{1+\sigma_{2}}$
$\left[\gamma_{1}\right]=[\gamma]^{1+\sigma_{2}}$
$\left[\gamma_{2}\right]=[\gamma]^{1+\sigma_{1}}$

A sample of $\mathbb{F}_{2}[\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}]$-indecomposables

For $n>1$, there are 2 indecomposables of dimension $2 n+1$

A sample of $\mathbb{F}_{2}[\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}]$-indecomposables

Our module decomposition

Theorem [Chemotti, Mináč, S-, Swallow]

Suppose $\operatorname{char}(K) \neq 2$ and $\operatorname{Gal}(K / F) \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. Then

$$
K^{\times} / K^{\times 2} \simeq O_{1} \oplus O_{2} \oplus Q_{0} \oplus Q_{1} \oplus Q_{2} \oplus Q_{3} \oplus Q_{4} \oplus X,
$$

where

- for each $i \in\{1,2\}$, the summand O_{i} is a direct sum of modules isomorphic to Ω^{i}; and
- for each $i \in\{0,1,2,3,4\}$, the summand Q_{i} is a direct sum of modules isomorphic to $\mathbb{F}_{2}\left[G / H_{i}\right]$; and
- X is isomorphic to one of the following:

$$
\{0\}, \mathbb{F}_{2}, \mathbb{F}_{2} \oplus \mathbb{F}_{2}, \Omega^{-1}, \Omega^{-2}, \text { or } \Omega^{-1} \oplus \Omega^{-1}
$$

Our module decomposition

Theorem [Chemotti, Mináč, S-, Swallow]

Suppose $\operatorname{char}(K) \neq 2$ and $\operatorname{Gal}(K / F) \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. Then

$$
K^{\times} / K^{\times 2} \simeq \underbrace{O_{1} \oplus O_{2} \oplus Q_{0} \oplus Q_{1} \oplus Q_{2} \oplus Q_{3} \oplus Q_{4}}_{\text {"unexceptional summand" } Y} \oplus X,
$$

where

- for each $i \in\{1,2\}$, the summand O_{i} is a direct sum of modules isomorphic to Ω^{i}; and
- for each $i \in\{0,1,2,3,4\}$, the summand Q_{i} is a direct sum of modules isomorphic to $\mathbb{F}_{2}\left[G / H_{i}\right]$; and
- X is isomorphic to one of the following:

$$
\{0\}, \mathbb{F}_{2}, \mathbb{F}_{2} \oplus \mathbb{F}_{2}, \Omega^{-1}, \Omega^{-2}, \text { or } \Omega^{-1} \oplus \Omega^{-1}
$$

Motivation and Background

How the decomposition works

Basic strategy

Lemma (Exclusion lemma)

If $U, V \subseteq W$ are $\mathbb{F}_{2}[G]$-modules, then

$$
U \cap V=\{0\} \Longleftrightarrow U^{G} \cap V^{G}=\{0\}
$$

Basic strategy

Lemma (Exclusion lemma)

If $U, V \subseteq W$ are $\mathbb{F}_{2}[G]$-modules, then

$$
U \cap V=\{0\} \Longleftrightarrow U^{G} \cap V^{G}=\{0\}
$$

Strategy:

I: Build a big module Y with $Y^{G}=\left[F^{\times}\right] \subseteq\left(K^{\times} / K^{\times 2}\right)^{G}$

Basic strategy

Lemma (Exclusion lemma)

If $U, V \subseteq W$ are $\mathbb{F}_{2}[G]$-modules, then

$$
U \cap V=\{0\} \Longleftrightarrow U^{G} \cap V^{G}=\{0\}
$$

Strategy:

I: Build a big module Y with $Y^{G}=\left[F^{\times}\right] \subseteq\left(K^{\times} / K^{\times 2}\right)^{G}$
II: Build a small module X "over" a complement to $\left[F^{\times}\right]$

Basic strategy

Lemma (Exclusion lemma)

If $U, V \subseteq W$ are $\mathbb{F}_{2}[G]$-modules, then

$$
U \cap V=\{0\} \Longleftrightarrow U^{G} \cap V^{G}=\{0\}
$$

Strategy:

I: Build a big module Y with $Y^{G}=\left[F^{\times}\right] \subseteq\left(K^{\times} / K^{\times 2}\right)^{G}$
II: Build a small module X "over" a complement to $\left[F^{\times}\right]$
III: Show $X+Y$ spans

Basic strategy

Lemma (Exclusion lemma)

If $U, V \subseteq W$ are $\mathbb{F}_{2}[G]$-modules, then

$$
U \cap V=\{0\} \Longleftrightarrow U^{G} \cap V^{G}=\{0\}
$$

Strategy:

I: Build a big module Y with $Y^{G}=\left[F^{\times}\right] \subseteq\left(K^{\times} / K^{\times 2}\right)^{G}$
II: Build a small module X "over" a complement to $\left[F^{\times}\right]$
III: Show $X+Y$ spans

How do we build Y ?

Guiding principle

If $[f] \in\left[F^{\times}\right]$is in the image of a norm map in $K^{\times} / K^{\times 2}$, make sure it's in the image of that norm map in Y.

How do we build Y ?

Guiding principle

If $[f] \in\left[F^{\times}\right]$is in the image of a norm map in $K^{\times} / K^{\times 2}$, make sure it's in the image of that norm map in Y.

...greed, for lack of a hetiter wori, is good.

How do we build Y ?

Guiding principle

If $[f] \in\left[F^{\times}\right]$is in the image of a norm map in $K^{\times} / K^{\times 2}$, make sure it's in the image of that norm map in Y.

..greed, for lack of a hetier word, is good.

Greed, inallof its forms greed for life, for money, for tewe norms, knowledge has marked the upwaril surge of mankini.

Introducing the norms

Introducing the norms

$\mathscr{A}=\{[f]: \exists[k] \ni \ldots\}$

$$
\mathscr{C}=\{[f]: \exists[\gamma] \ni \ldots\}
$$

Tension!

But what if $[f] \in \mathscr{B} \cap \mathscr{C}$?

Tension!

But what if $[f] \in \mathscr{B} \cap \mathscr{C}$?

Tension!

But what if $[f] \in \mathscr{B} \cap \mathscr{C}$?

Tension!

But what if $[f] \in \mathscr{B} \cap \mathscr{C}$?

Tension!

But what if $[f] \in \mathscr{B} \cap \mathscr{C}$?

To be greedy, we want \mathscr{V} more than \mathscr{B} or \mathscr{C}

One final issue

What about $(\mathscr{B}+\mathscr{C}) \cap \mathscr{D}$?

One final issue

What about $(\mathscr{B}+\mathscr{C}) \cap \mathscr{D}$?
Lemma [Tracking norm interactions]
$[b][c] \in(\mathscr{B}+\mathscr{C}) \cap \mathscr{D}$ if and only if there is a solution to

Define $\mathscr{W}=\left\{([b],[c]): \exists\left[\gamma_{1}\right],\left[\gamma_{2}\right],\left[\gamma_{3}\right] \ni \ldots\right\}$.

Building the unexceptional piece

Proposition

There exists a submodule Y whose fixed part is [F^{\times}], and which is a direct sum of modules isomorphic to

- $\mathbb{F}_{2}\left[G / H_{i}\right]$ for $i \in\{0,1,2,3,4\}$
- Ω^{k} for $k \in\{1,2\}$

Building the unexceptional piece

Proposition

There exists a submodule Y whose fixed part is [F^{\times}], and which is a direct sum of modules isomorphic to

- $\mathbb{F}_{2}\left[G / H_{i}\right]$ for $i \in\{0,1,2,3,4\}$
- Ω^{k} for $k \in\{1,2\}$

Proof sketch:

Building the unexceptional piece

Proposition

There exists a submodule Y whose fixed part is [F^{\times}], and which is a direct sum of modules isomorphic to

- $\mathbb{F}_{2}\left[G / H_{i}\right]$ for $i \in\{0,1,2,3,4\}$
- Ω^{k} for $k \in\{1,2\}$

Proof sketch:
Move through subspaces in order $\left(\mathscr{A}, \mathscr{V}, \mathscr{W}, \mathscr{B}, \mathscr{C}, \mathscr{D},\left[F^{\times}\right]\right)$

Building the unexceptional piece

Proposition

There exists a submodule Y whose fixed part is [F^{\times}], and which is a direct sum of modules isomorphic to

- $\mathbb{F}_{2}\left[G / H_{i}\right]$ for $i \in\{0,1,2,3,4\}$
- Ω^{k} for $k \in\{1,2\}$

Proof sketch:

Move through subspaces in order $\left(\mathscr{A}, \mathscr{V}, \mathscr{W}, \mathscr{B}, \mathscr{C}, \mathscr{D},\left[F^{\times}\right]\right)$
\rightsquigarrow Make module "above" your element for given diagram

Building the unexceptional piece

Proposition

There exists a submodule Y whose fixed part is $\left[F^{\times}\right]$, and which is a direct sum of modules isomorphic to

- $\mathbb{F}_{2}\left[G / H_{i}\right]$ for $i \in\{0,1,2,3,4\}$
- Ω^{k} for $k \in\{1,2\}$

Proof sketch:
Move through subspaces in order $\left(\mathscr{A}, \mathscr{V}, \mathscr{W}, \mathscr{B}, \mathscr{C}, \mathscr{D},\left[F^{\times}\right]\right)$
\rightsquigarrow Make module "above" your element for given diagram
\rightsquigarrow Be sure to avoid what you've already captured!

Reinterpreting the construction of Y

Arithmetic interpretation for solvability

Original argument views Y in terms of solvability of diagrams, but gives no indication of how we determine solvability

Arithmetic interpretation for solvability

Original argument views Y in terms of solvability of diagrams, but gives no indication of how we determine solvability

Theorem [Diagram solvability and $\operatorname{Br}(F)$]
Let $\mathcal{S}=\left\langle\left(a_{1}, a_{1}\right),\left(a_{1}, a_{2}\right),\left(a_{2}, a_{2}\right)\right\rangle \subseteq \operatorname{Br}(F)$. For $f, g \in F^{\times}$, we have $\left(a_{1}, f\right)\left(a_{2}, g\right) \in \mathcal{S}$ iff there exists $\gamma \in K^{\times}$with

Arithmetic interpretation for solvability

Original argument views Y in terms of solvability of diagrams, but gives no indication of how we determine solvability

Theorem [Diagram solvability and $\operatorname{Br}(F)$]

$$
\text { Let } \mathcal{S}=\left\langle\left(a_{1}, a_{1}\right),\left(a_{1}, a_{2}\right),\left(a_{2}, a_{2}\right)\right\rangle \subseteq \operatorname{Br}(F) \text {. For } f, g \in F^{\times} \text {, }
$$ we have $\left(a_{1}, f\right)\left(a_{2}, g\right) \in \mathcal{S}$ iff there exists $\gamma \in K^{\times}$with

Sketch of proof: solvability of Galois embedding problems

Thinking rationally

Great news: if $F=\mathbb{Q}$, then local-global principle makes computing elements of $\operatorname{Br}(\mathbb{Q})$ nicely explicit:
$(a, b)=(c, d) \in \operatorname{Br}(\mathbb{Q})$ iff for all $v \in\{2,3,5,7, \cdots, \infty\}$ we have $(a, b)_{v}=(c, d)_{v}$

Thinking rationally

Great news: if $F=\mathbb{Q}$, then local-global principle makes computing elements of $\operatorname{Br}(\mathbb{Q})$ nicely explicit:
$(a, b)=(c, d) \in \operatorname{Br}(\mathbb{Q})$ iff for all $v \in\{2,3,5,7, \cdots, \infty\}$ we have $(a, b)_{v}=(c, d)_{v}$

- if $p=\infty$ and $a, b \in \mathbb{Z}$ then

$$
(a, b)_{\infty}=-1 \text { if } a, b<0, \quad(a, b)_{\infty}=1 \text { else }
$$

- if p odd prime then for $\operatorname{gcd}(a, p)=\operatorname{gcd}(b, p)=1$ we get

$$
(a, b)_{p}=1, \quad(a, p)_{p}=\left(\frac{a}{p}\right), \quad(p, p)_{p}=\left(\frac{-1}{p}\right)
$$

- if $p=2$ and $a, b \in 2 \mathbb{Z}+1$ then

$$
(a, b)_{2}=(-1)^{\frac{a-1}{2} \cdot \frac{b-1}{2}}, \quad(a, 2)_{p}=(-1)^{\frac{a^{2}-1}{8}}, \quad(2,2)_{2}=1
$$

Application: hunting for summands

$$
\mathscr{V}=\left\{[f]: \exists\left[\gamma_{1}\right],\left[\gamma_{2}\right] \text { with }<_{[f]}^{\left[\gamma_{1}\right]}\right.
$$

Application: hunting for summands

$$
\begin{aligned}
\mathscr{V} & =\left\{[f]: \exists\left[\gamma_{1}\right],\left[\gamma_{2}\right]\right. \text { with } \\
& =\left\{[f]:\left(a_{1}, f\right)\left(a_{2}, 1\right) \in \mathcal{S} \text { and }\left(a_{1}, 1\right)\left(a_{2}, f\right) \in \mathcal{S}\right\}
\end{aligned}
$$

Application: hunting for summands

$$
\begin{aligned}
\mathscr{V} & =\left\{[f]: \exists\left[\gamma_{1}\right],\left[\gamma_{2}\right]\right. \text { with } \\
& =\left\{[f]:\left(a_{1}, f\right)\left(a_{2}, 1\right) \in \mathcal{S} \text { and }\left(a_{1}, 1\right)\left(a_{2}, f\right) \in \mathcal{S}\right\}
\end{aligned}
$$

Application: hunting for summands

$$
\begin{aligned}
\mathscr{V} & =\left\{[f]: \exists\left[\gamma_{1}\right],\left[\gamma_{2}\right]\right. \text { with } \\
& =\left\{[f]:\left(a_{1}, f\right)\left(a_{2}, 1\right) \in \mathcal{S} \text { and }\left(a_{1}, 1\right)\left(a_{2}, f\right) \in \mathcal{S}\right\} \\
& =\left\{[f]:\left(a_{1}, f\right) \in \mathcal{S} \text { and }\left(a_{2}, f\right) \in \mathcal{S}\right\}
\end{aligned}
$$

Application: hunting for summands

$$
\begin{aligned}
\mathscr{V} & =\left\{[f]: \exists\left[\gamma_{1}\right],\left[\gamma_{2}\right]\right. \text { with } \\
& =\left\{[f]:\left(a_{1}, f\right)\left(a_{2}, 1\right) \in \mathcal{S} \text { and }\left(a_{1}, 1\right)\left(a_{2}, f\right) \in \mathcal{S}\right\} \\
& =\left\{[f]:\left(a_{1}, f\right) \in \mathcal{S} \text { and }\left(a_{2}, f\right) \in \mathcal{S}\right\}
\end{aligned}
$$

Corollary

Ω^{1} summands of $K^{\times} / K^{\times 2}$ exist if there exists f so that $\left(a_{1}, f\right),\left(a_{2}, f\right) \in \mathcal{S} \backslash\{0\}$.

Finding Ω^{1} summands in the wild

$$
\begin{aligned}
& \text { Let } K / F=\mathbb{Q}(\sqrt{7}, \sqrt{-5}) / \mathbb{Q} \\
& \qquad \mathcal{S}=\langle(7,7),(7,-5),(-5,-5)\rangle
\end{aligned}
$$

Finding Ω^{1} summands in the wild

$$
\begin{aligned}
& \text { Let } K / F=\mathbb{Q}(\sqrt{7}, \sqrt{-5}) / \mathbb{Q} \\
& \qquad \mathcal{S}=\langle(7,7),(7,-5),(-5,-5)\rangle
\end{aligned}
$$

Goal: show $K^{\times} / K^{\times 2}$ has Ω^{1} summands
\rightsquigarrow enough to find $f \in \mathbb{Q}$ so $(-5, f),(7, f) \in \mathcal{S} \backslash\{0\}$

Finding Ω^{1} summands in the wild

Let $K / F=\mathbb{Q}(\sqrt{7}, \sqrt{-5}) / \mathbb{Q}$

$$
\mathcal{S}=\langle(7,7),(7,-5),(-5,-5)\rangle
$$

Goal: show $K^{\times} / K^{\times 2}$ has Ω^{1} summands \rightsquigarrow enough to find $f \in \mathbb{Q}$ so $(-5, f),(7, f) \in \mathcal{S} \backslash\{0\}$

Strategy: find prime p with $(-5,-p)=(-5,-5)$ and $(7,-p)=(7,7)$

Finding our prime, part I: $(-5,-5)=(-5,-p)$

Fact: $(-5,-5)_{v}=-1$ iff $v=2, \infty$

Finding our prime, part I: $(-5,-5)=(-5,-p)$

Fact: $(-5,-5)_{v}=-1$ iff $v=2, \infty$

$$
(-5,-p)_{v}=(-1,-1)_{v}(5,-1)_{v}(-1, p)_{v}(5, p)_{v}
$$

Finding our prime, part I: $(-5,-5)=(-5,-p)$

Fact: $(-5,-5)_{v}=-1$ iff $v=2, \infty$

$$
\begin{aligned}
(-5,-p)_{v} & =(-1,-1)_{v}(5,-1)_{v}(-1, p)_{v}(5, p)_{v} \\
& =\left\{\begin{aligned}
& \text { if } v=\infty \\
& \text { if } v=2 \\
& \text { if } v=5 \\
& \text { if } v=p .
\end{aligned}\right.
\end{aligned}
$$

Finding our prime, part I: $(-5,-5)=(-5,-p)$

Fact: $(-5,-5)_{v}=-1$ iff $v=2, \infty$

$$
\begin{aligned}
(-5,-p)_{v} & =(-1,-1)_{v}(5,-1)_{v}(-1, p)_{v}(5, p)_{v} \\
& = \begin{cases}-1, & \text { if } v=\infty \\
\text { if } v=2 \\
& \text { if } v=5\end{cases} \\
& \text { if } v=p .
\end{aligned}
$$

Finding our prime, part I: $(-5,-5)=(-5,-p)$

Fact: $(-5,-5)_{v}=-1$ iff $v=2, \infty$

$$
\begin{aligned}
(-5,-p)_{v} & =(-1,-1)_{v}(5,-1)_{v}(-1, p)_{v}(5, p)_{v} \\
& = \begin{cases}-1, & \text { if } v=\infty \\
-1 \cdot 1 \cdot(-1)^{\frac{p-1}{2}} \cdot 1, & \text { if } v=2 \\
& \text { if } v=5\end{cases} \\
& \text { if } v=p .
\end{aligned} ~ .
$$

Finding our prime, part I: $(-5,-5)=(-5,-p)$

Fact: $(-5,-5)_{v}=-1$ iff $v=2, \infty$

$$
\begin{aligned}
(-5,-p)_{v} & =(-1,-1)_{v}(5,-1)_{v}(-1, p)_{v}(5, p)_{v} \\
& = \begin{cases}-1, & \text { if } v=\infty \\
-1 \cdot 1 \cdot(-1)^{\frac{p-1}{2}} \cdot 1, & \text { if } v=2 \\
1 \cdot\left(\frac{-1}{5}\right) \cdot 1 \cdot\left(\frac{p}{5}\right), & \text { if } v=5 \\
& \text { if } v=p .\end{cases}
\end{aligned}
$$

Finding our prime, part I: $(-5,-5)=(-5,-p)$

Fact: $(-5,-5)_{v}=-1$ iff $v=2, \infty$

$$
\begin{aligned}
(-5,-p)_{v} & =(-1,-1)_{v}(5,-1)_{v}(-1, p)_{v}(5, p)_{v} \\
& = \begin{cases}-1, & \text { if } v=\infty \\
-1 \cdot 1 \cdot(-1)^{\frac{p-1}{2}} \cdot 1, & \text { if } v=2 \\
1 \cdot\left(\frac{-1}{5}\right) \cdot 1 \cdot\left(\frac{p}{5}\right), & \text { if } v=5 \\
1 \cdot 1 \cdot\left(\frac{-1}{p}\right) \cdot\left(\frac{5}{p}\right), & \text { if } v=p .\end{cases}
\end{aligned}
$$

Finding our prime, part I: $(-5,-5)=(-5,-p)$

Fact: $(-5,-5)_{v}=-1$ iff $v=2, \infty$

$$
\begin{aligned}
(-5,-p)_{v} & =(-1,-1)_{v}(5,-1)_{v}(-1, p)_{v}(5, p)_{v} \\
& = \begin{cases}-1, & \text { if } v=\infty \\
-1 \cdot 1 \cdot(-1)^{\frac{p-1}{2}} \cdot 1, & \text { if } v=2 \\
1 \cdot\left(\frac{-1}{5}\right) \cdot 1 \cdot\left(\frac{p}{5}\right), & \text { if } v=5 \\
1 \cdot 1 \cdot\left(\frac{-1}{p}\right) \cdot\left(\frac{5}{p}\right), & \text { if } v=p .\end{cases}
\end{aligned}
$$

So we want $p \equiv 1(\bmod 4)$ and $p \equiv 1,4(\bmod 5)$

Finding our prime, part II: $(7,7)=(7,-p)$

Fact: $(7,7)_{v}=-1$ iff $v=2,7$

Finding our prime, part II: $(7,7)=(7,-p)$

Fact: $(7,7)_{v}=-1$ iff $v=2,7$

$$
\begin{aligned}
(7,-p)_{v} & =(7,-1)_{v}(7, p)_{v} \\
& = \begin{cases}1, & \text { if } v=\infty \\
-1 \cdot(-1)^{\frac{p-1}{2}}, & \text { if } v=2 \\
\left(\frac{-1}{7}\right) \cdot\left(\frac{p}{7}\right), & \text { if } v=7 \\
1 \cdot\left(\frac{7}{p}\right), & \text { if } v=p .\end{cases}
\end{aligned}
$$

Finding our prime, part II: $(7,7)=(7,-p)$

Fact: $(7,7)_{v}=-1$ iff $v=2,7$

$$
\begin{aligned}
(7,-p)_{v} & =(7,-1)_{v}(7, p)_{v} \\
& = \begin{cases}1, & \text { if } v=\infty \\
-1 \cdot(-1)^{\frac{p-1}{2},}, & \text { if } v=2 \\
\left(\frac{-1}{7}\right) \cdot\left(\frac{p}{7}\right), & \text { if } v=7 \\
1 \cdot\left(\frac{7}{p}\right), & \text { if } v=p .\end{cases}
\end{aligned}
$$

So we need $p \equiv 1(\bmod 4)$ and $p \equiv 1,2,4(\bmod 7)$

Finding our prime, part II: $(7,7)=(7,-p)$

Fact: $(7,7)_{v}=-1$ iff $v=2,7$

$$
\begin{aligned}
(7,-p)_{v} & =(7,-1)_{v}(7, p)_{v} \\
& = \begin{cases}1, & \text { if } v=\infty \\
-1 \cdot(-1)^{\frac{p-1}{2},}, & \text { if } v=2 \\
\left(\frac{-1}{7}\right) \cdot\left(\frac{p}{7}\right), & \text { if } v=7 \\
1 \cdot\left(\frac{7}{p}\right), & \text { if } v=p .\end{cases}
\end{aligned}
$$

So we need $p \equiv 1(\bmod 4)$ and $p \equiv 1,2,4(\bmod 7)$
Summary: any prime p with $p \equiv 1(\bmod 4), p \equiv 1,4$ $(\bmod 5)$, and $p \equiv 1,2,4(\bmod 7)$ works.

Finding our prime, part II: $(7,7)=(7,-p)$

Fact: $(7,7)_{v}=-1$ iff $v=2,7$

$$
\begin{aligned}
(7,-p)_{v} & =(7,-1)_{v}(7, p)_{v} \\
& = \begin{cases}1, & \text { if } v=\infty \\
-1 \cdot(-1)^{\frac{p-1}{2}}, & \text { if } v=2 \\
\left(\frac{-1}{7}\right) \cdot\left(\frac{p}{7}\right), & \text { if } v=7 \\
1 \cdot\left(\frac{7}{p}\right), & \text { if } v=p .\end{cases}
\end{aligned}
$$

So we need $p \equiv 1(\bmod 4)$ and $p \equiv 1,2,4(\bmod 7)$
Summary: any prime p with $p \equiv 1(\bmod 4), p \equiv 1,4$ $(\bmod 5)$, and $p \equiv 1,2,4(\bmod 7)$ works.
\rightsquigarrow lots of Ω^{1} summands in this module

What about Ω^{2} summands?

Ω^{2} summands occurs for solutions to

AND we must have $[f],[g] \notin \mathscr{V}$

What about Ω^{2} summands?

Ω^{2} summands occurs for solutions to

AND we must have $[f],[g] \notin \mathscr{V}$
So we need $\left(a_{1}, f\right),\left(a_{2}, g\right) \in \mathcal{S}$ and $\left(a_{2}, f\right)\left(a_{1}, g\right) \in \mathcal{S}$ but $\left(a_{2}, f\right),\left(a_{1}, g\right) \notin \mathcal{S}$

What about Ω^{2} summands?

Ω^{2} summands occurs for solutions to

AND we must have $[f],[g] \notin \mathscr{V}$
So we need $\left(a_{1}, f\right),\left(a_{2}, g\right) \in \mathcal{S}$ and $\left(a_{2}, f\right)\left(a_{1}, g\right) \in \mathcal{S}$ but $\left(a_{2}, f\right),\left(a_{1}, g\right) \notin \mathcal{S}$

What about Ω^{2} summands?

Ω^{2} summands occurs for solutions to

AND we must have $[f],[g] \notin \mathscr{V}$
So we need $\left(a_{1}, f\right),\left(a_{2}, g\right) \in \mathcal{S}$ and $\left(a_{2}, f\right)\left(a_{1}, g\right) \in \mathcal{S}$ but $\left(a_{2}, f\right),\left(a_{1}, g\right) \notin \mathcal{S}$

What about Ω^{2} summands?

Ω^{2} summands occurs for solutions to

AND we must have $[f],[g] \notin \mathscr{V}$
So we need $\left(a_{1}, f\right),\left(a_{2}, g\right) \in \mathcal{S}$ and $\left(a_{2}, f\right)\left(a_{1}, g\right) \in \mathcal{S}$ but $\left(a_{2}, f\right),\left(a_{1}, g\right) \notin \mathcal{S}$

What about Ω^{2} summands?

Ω^{2} summands occurs for solutions to

AND we must have $[f],[g] \notin \mathscr{V}$
So we need $\left(a_{1}, f\right),\left(a_{2}, g\right) \in \mathcal{S}$ and $\left(a_{2}, f\right)\left(a_{1}, g\right) \in \mathcal{S}$ but $\left(a_{2}, f\right),\left(a_{1}, g\right) \notin \mathcal{S}$

What about Ω^{2} summands?

Ω^{2} summands occurs for solutions to

AND we must have $[f],[g] \notin \mathscr{V}$
So we need $\left(a_{1}, f\right),\left(a_{2}, g\right) \in \mathcal{S}$ and $\left(a_{2}, f\right)\left(a_{1}, g\right) \in \mathcal{S}$ but $\left(a_{2}, f\right),\left(a_{1}, g\right) \notin \mathcal{S}$

Corollary

Ω^{2} summands of $K^{\times} / K^{\times 2}$ exist if there exist f, g so that $\left(a_{1}, f\right),\left(a_{2}, g\right) \in \mathcal{S}$ and $\left(a_{1}, g\right)=\left(a_{2}, f\right) \notin \mathcal{S}$.

Finding Ω^{2} summands in the wild

Let $K / F=\mathbb{Q}(\sqrt{33}, \sqrt{35}) / \mathbb{Q}$

Finding Ω^{2} summands in the wild

Let $K / F=\mathbb{Q}(\sqrt{33}, \sqrt{35}) / \mathbb{Q}$
Goal: show $K^{\times} / K^{\times 2}$ has Ω^{2} summands
\rightsquigarrow enough to find f, g so that $\left(a_{1}, f\right),\left(a_{2}, g\right) \in \mathcal{S}$ and

$$
\left(a_{1}, g\right)=\left(a_{2}, f\right) \notin \mathcal{S} .
$$

Finding Ω^{2} summands in the wild

Let $K / F=\mathbb{Q}(\sqrt{33}, \sqrt{35}) / \mathbb{Q}$
Goal: show $K^{\times} / K^{\times 2}$ has Ω^{2} summands
\rightsquigarrow enough to find f, g so that $\left(a_{1}, f\right),\left(a_{2}, g\right) \in \mathcal{S}$ and

$$
\left(a_{1}, g\right)=\left(a_{2}, f\right) \notin \mathcal{S}
$$

Strategy: find primes p, q with $(33,3 p q)=(33,33)$ and $(35,7 p q)=(1,1)$ and $(33,7 p q)=(35,3 p q) \notin \mathcal{S}$

Finding Ω^{2} summands in the wild

Let $K / F=\mathbb{Q}(\sqrt{33}, \sqrt{35}) / \mathbb{Q}$
Goal: show $K^{\times} / K^{\times 2}$ has Ω^{2} summands
\rightsquigarrow enough to find f, g so that $\left(a_{1}, f\right),\left(a_{2}, g\right) \in \mathcal{S}$ and

$$
\left(a_{1}, g\right)=\left(a_{2}, f\right) \notin \mathcal{S}
$$

Strategy: find primes p, q with $(33,3 p q)=(33,33)$ and $(35,7 p q)=(1,1)$ and $(33,7 p q)=(35,3 p q) \notin \mathcal{S}$ \rightsquigarrow Choose p so $p \not \equiv \square(\bmod 3), p \not \equiv \square(\bmod 4), p \not \equiv \square$ $(\bmod 5), p \equiv \square(\bmod 7)$, and $p \not \equiv \square(\bmod 11)$
\rightsquigarrow Choose q so $q \equiv \square(\bmod 3), q \equiv \square(\bmod 4), q \equiv \square$ $(\bmod 5), q \equiv \square(\bmod 7)$, and $q \equiv \square(\bmod 11)$

Lather, rinse, repeat

This same strategy provides methods for realizing other "unexceptional" summand types over well-chosen rational biquadratic extensions

Lather, rinse, repeat

This same strategy provides methods for realizing other "unexceptional" summand types over well-chosen rational biquadratic extensions

The structure of the X summand also has new interpretation in this lens (but less exciting since it was originally interpretable in terms of Galois embeddings)

Thanks!

